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1
TRACE CORRELATION FOR PROFILING
SUBROUTINES

BACKGROUND

1. Technical Field

This disclosure relates generally to profiling subroutines
executing on a processor, and more specifically, to identifying
and correlating trace data associated with executing subrou-
tines.

2. Description of the Related Art

Developers of processors and/or applications usually need
to have access to a basic set of development tool functions in
order to accomplish their jobs. For run-control, a developer
typically needs to query and modify when a processor is
halted, showing all locations available in a supervisor map of
the processor. Moreover, a developer also usually needs sup-
port for breakpoint/watchpoint features in debuggers, either
as hardware or software breakpoints depending on the archi-
tecture. For logic analysis, a developer usually needs to
access instruction trace information. A developer typically
needs to be able to interrogate and correlate instruction flow
to real-world interactions. A developer also usually needs to
retrieve information on how data flows through the system
and to understand what system resources are creating and
accessing data. Additionally, a developer usually needs to
assess whether embedded software is meeting a required
performance level.

The Nexus 5001 Forum (formerly known as the global
embedded processor debug interface standard consortium
(GEPDISC)) was formed to develop an embedded debug/
trace interface standard (the “Nexus standard”) for embedded
control applications. The Nexus standard is particularly
applicable to the development of automotive powertrains,
data communication equipment, computer peripherals, wire-
less systems, and other control applications. The Nexus stan-
dard provides a specification and guidelines for implement-
ing various messages, e.g., program trace messages (such as
branch history messages and synchronization messages),
data trace messages, and task/process identification messages
(such as ownership trace messages), that may be utilized in
debugging applications while minimally impacting operation
of a system under development. As defined by the Nexus
standard, a program trace message is a message that is pro-
vided in response to a change of program flow. According to
the Nexus standard, a data trace message is a message that
provides visibility of a target processor when a memory write/
read reference is detected that matches debug logic data trace
attributes. The Nexus standard also defines an ownership
trace message (OTM) as a message that provides a macro-
scopic view of a processor that may be used for task flow
reconstruction when debugging software that is written in a
high-level language.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is illustrated by way of example and
is not limited by the accompanying figures. Elements in the
figures are illustrated for simplicity and clarity and have not
necessarily been drawn to scale.

FIG. 1 provides a block diagram of a data processing sys-
tem configured with a debug/trace unit, according to one or
more embodiments;

FIG. 2 provides an exemplary trace setup, according to one
or more embodiments;
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FIG. 3 provides a block diagram that provides further detail
of a trace interface, according to one or more embodiments;
and

FIG. 4 is a flowchart diagram of a method, according to one
or more embodiments.

DETAILED DESCRIPTION

Turning now to FIG. 1, a block diagram of a data process-
ing system configured with a debug/trace unit is illustrated,
according to one or more embodiments. In one or more
embodiments, a processor system 100 can include a process-
ing unit 105 (e.g., a chip-level processing unit, an integrated
circuit processing unit, a system on chip processing unit, etc.)
coupled to a memory 175A2. In one or more embodiments,
the term “coupled” can include both direct electrical connec-
tion between/among elements and indirect electrical connec-
tion between/among elements that is achieved with one or
more intervening elements. As illustrated, processing unit
105 can include one or more cores 110A1 and 110A2 that can
execute processor instructions of an instruction set architec-
ture (ISA), and cores 110A1 and 110A2 can include first level
caches 115A1 and 115A2, respectively. In one or more
embodiments, each of caches 115A1 and 115A2 can include
separate data and instruction portions or data and instructions
can share one or more portions of the cache. Cores 110A1 and
110A2 can be coupled to a second level cache 120 and a
coherency module 125. In one or more embodiments, coher-
ency module 125 can provide and/or maintain coherency
across local cacheable memory. In one example, coherency
module 125 can provide I/O-initiated transactions to snoop
the bus between cores 110A1 and 110A2 and/or between
either of cores 110A1 and 110A2 and second level cache 120.
In a second example, coherency module 125 can provide a
flexible switch-type structure that can route and/or dispatch
core and 1/O initiated transactions to target elements and/or
units of processing unit 105. In another example, coherency
module 125 can provide a mechanism for any I/O transaction
to maintain coherency with a cacheable memory medium,
such as memory 175A1 and/or 175A2, and the local bus
memory and/or second level cache 120. As illustrated, coher-
ency module 125 can be coupled to a system bus 130.

In one or more embodiments, processing unit 105 can
include an on-chip network 135 coupled to system bus 130.
On-chip network 135 can include a multi-port, on-chip, non-
blocking crossbar switch fabric. In one or more embodi-
ments, the switch fabric serves to decrease contention and
increase bandwidth, and the non-blocking crossbar fabric can
allow full-duplex port communication with independent per-
port transaction queuing and/or flow control.

In one or more embodiments, processing unit 105 can
include one or more peripheral component interconnect (PCI)
units 140A1-140A3 that can be coupled to on-chip network
135. For example, one or more PCI units 140A1-140A3 can
implement a PCI Express interface. For instance, the PCI
Express interface can be compliant with a PCI Express Base
Specification.

Inone or more embodiments, a Serial RapidIO unit 145 can
be coupled to on-chip network 135. For example, Serial
RapidIO unit 145 can be based on the RapidlO Interconnect
Specification, Revision 1.2. RapidIO can include a high-per-
formance, point-to-point, low-pin-count, packet-switched
system-level interconnect that can be used in a variety of
applications. The RapidlO architecture can provide a variety
of features including high data bandwidth, low-latency capa-
bility, and support for high-performance /O devices, as well
as providing message-passing and software-managed pro-
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gramming models. Serial RapidIO unit 145 can support mul-
tiple inbox/outbox mailboxes (queues) for data and one or
more doorbell message structures. Chaining and/or direct
modes can be provided for an outbox, and messages can hold
multiple packets. In one or more embodiments, Serial
RapidIO unit 145 can support /O and/or message-passing
logical specifications, 8-bit and/or 16-bit common transport
specifications, and/or the 1x/4x LP-Serial physical layer
specification of the RapidlO Interconnect Specification,
Revision 1.2.

In one or more embodiments, processing unit 105 can
include direct memory access (DMA) engines 150A1 and
150A2 that can be coupled to on-chip network 135. Each of
DMA engines 150A1 and 150A2 can be capable of transfer-
ring blocks of data from any legal address range to any other
legal address range. For instance, DMA 150A1 can perform
DMA transfers between any /O or memory ports or even
between two devices or locations on the same port. In one or
more embodiments, each of DMA 150A1 and 150A2 can
include four-channel DMA controllers. For example, the
four-channel DMA controllers can allow chaining (extended
and/or direct) through local memory-mapped chain descrip-
tors. In one or more embodiments, misaligned transfers can
be supported, and capabilities such as stride transfers and
complex transaction chaining can be supported.

In one or more embodiments, processing unit 105 can
include a performance monitor 160 coupled to system bus
130. Performance monitor 160 can perform counts of events
and processor clocks associated with operations such as
cache misses, mispredicted branches, etc. In one or more
embodiments, performance monitor 160 can monitor, record,
and/or output a number of micro operations (micro-ops) com-
pleted, a number of branch instructions completed, a number
of'load micro-ops completed (e.g., vector instructions and/or
cache instructions that operate on multiple pieces of data), a
number of store micro-ops completed (e.g., vector instruc-
tions and cache instructions that operate on multiple pieces of
data), a number of fetch redirects, a number of branches
finished, a number of branches taken, a percentage of
branches taken, a number of finished unconditional branches
that miss in a branch-target buffer, statistics and/or informa-
tion associated with other branch prediction(s)/
misprediction(s), a number of pipeline stalls (and for what
cause), anumber of memory management unit (MMU) trans-
lations, a number of MMU translation misses, a number of
load/store accesses, a number of level one cache locks,
reloads, and/or cast-outs, a number of cycles load/store unit
stalls (and for what reason), snoop statistics (e.g., for coher-
ency impacts), interrupt latencies (e.g., a number of cycles an
interrupt is pending before being recognized/serviced), level
two cache statistics (e.g., hit/miss/allocate/invalidate), float-
ing point unit (FPU) performance information (e.g., stalls,
double pumps, etc.), mark conditions (e.g., instruction
address compare matches, data address compare matches,
etc.), and/or a number of times a specific instruction executes
and/or a specific load/store address accessed, among others.
In one or more embodiments, performance monitor 160 can
help to identify bottlenecks and can improve system perfor-
mance by monitoring instruction execution and allowing a
trace unit to sample its data. In one or more embodiments, a
count of an event can be used to trigger a performance moni-
tor event.

In one or more embodiments, processing unit 105 can
include a debug/trace unit 155 that can be coupled to system
bus 130. Debug/trace unit 155 can interface with various units
of processing unit 105 and can gather information regarding
state and/or processing associated with the various units of
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processing unit 105. For example, debug/trace unit 155 can
interface with performance monitor 160 and gather informa-
tion associated with the various units of processing unit 105.
In one or more embodiments, debug/trace unit 155 can per-
form one or more operations without affecting operation of
processing system 105.

As shown, debug/trace unit 155 can include a trace inter-
face 156. In one or more embodiments, trace interface 156
can include a Nexus trace interface. For example, trace inter-
face 156 can be compliant with a Nexus standard (e.g., Nexus
5001). In one or more embodiments, trace interface 156 can
form and/or output one or more trace messages. For example,
trace interface 156 can form and output messages based on
events of performance monitor 160. As illustrated, processing
unit 105 can include a trace port 157 coupled to debug/trace
unit 155. In one or more embodiments, trace port 157 can be
compatible with one or more pin interfaces and/or hardware
protocols. In one example, trace port 157 can be compatible
with a pin interface and/or hardware protocol of IEEE (Insti-
tute of Electrical and Electronics Engineers) 1149.1 or JTAG
(Joint Test Action Group). For instance, trace port 157 can be
coupled to a JTAG debug unit of a computer system. In
another example, trace port 157 can be compatible with a
Nexus AUX port. In one or more embodiments, trace inter-
face 156 and/or trace port 157 can provide one or more
additional pin interfaces and/or hardware protocols and/or
augment one or more existing pin interfaces and/or hardware
protocols.

In one or more embodiments, processing unit 105 can
include a local bus 165 coupled to system bus 130. Local bus
165 can be coupled to external memories, DSPs, ASICs, etc.
As shown, processing system 100 can include non-volatile
(NV) storage 167 that can be coupled to processor unit 105
via local bus 165.

In one or more embodiments, processor unit 105 can
include one or more peripheral memory controllers 170A1
and 170A2 that can be coupled to system bus 130, and
memory controllers 170A1 and 170A2 can be coupled
memories 175A1 and 175A2, respectively. As illustrated,
memory 175A1 can be included in processing unit 105, and
memory 175A2 can be off-part memory of processor system
100. In one or more embodiments, one or more of memories
175A1 and 175A2 can include DDR SDRAM (double-data-
rate synchronous dynamic random access memory). Memo-
ries 175A1 and 175A2 can be considered memory mediums.
The term “memory medium” and/or “computer readable stor-
age medium” can include various types of memory and/or
storage. For example, memory medium and/or computer
readable storage medium can include an installation medium,
e.g., a CD-ROM, DVD-ROM, floppy disks, etc., a random
access memory or computer system memory (volatile and/or
non-volatile memory) such as DDR SDRAM, DRAM,
SRAM, EDO RAM, NVRAM, EPROM, EEPROM, flash
memory etc., and/or a non-volatile storage such as a magnetic
media, e.g., a hard drive, and/or optical storage. In one or
more embodiments, a memory medium and/or computer
readable storage medium can include other types of memory
and/or storage as well, or combinations thereof. In one or
more embodiments, a memory medium and/or computer
readable storage medium can be and/or include a product,
e.g., a software product, and/or an article of manufacture that
includes machine (e.g., processor) executable instructions
that implement one or more portions of methods and/or pro-
cesses described herein.

In one or more embodiments, processing unit 105 can
include a security accelerator 180 coupled to system bus 130.
Security accelerator 180 can perform security functions, such
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as key generation and exchange, authentication, and/or bulk
encryption from one or more of cores 110A1 and 110A2. In
one or more embodiments, security accelerator 180 can
implement and/or perform one or more cryptographic algo-
rithms. For example, one or more cryptographic algorithms
can include and/or be associated with IPsec (Internet protocol
security), IKE (Internet key exchange), SSL/TLS (secure
socket layer/transport layer security), iSCSI (Internet small
computer system interface), SRTP (secure real-time transport
protocol), IEEE 802.11i, A5/3 for GSM (global system for
mobile communications) and EDGE (enhanced data rates for
GSM evolution), and/or GEA3 for GPRS (general packet
radio service), among others.

In one or more embodiments, processing unit 105 can
include a programmable interrupt controller (PIC) 185
coupled to system bus 130. For example, PIC 185 can imple-
ment logic and/or programming structures of the OpenPIC
architecture, providing for external interrupts (with fully
nested interrupt delivery), message interrupts, internal-logic
driven interrupts, and/or global high-resolution timers. For
instance, a number of programmable interrupt priority levels
are supported. In one or more embodiments, inter-processor
interrupt (IPT) communication can allow one core to interrupt
another core or either core to interrupt itself. In one or more
embodiments, PIC 185 can be bypassed in favor of an exter-
nal interrupt controller.

In one or more embodiments, processing unit 105 can
include one or more Ethernet controllers/interfaces 190A1
and 190A2 coupled to system bus 130. Each of Ethernet
controllers/interfaces 190A1 and 190A2 can include a media
access control (MAC) sublayer that can support 10 and 100
Mbps and 1 Gbps Ethernet/ITEEE 802.3 networks with MII
(Media Independent Interface), RMII (Reduced Media Inde-
pendent Interface), GMII (Gigabit Media Independent Inter-
face), RGMII (Reduced Gigabit Media Independent Inter-
face), TBI (Ten Bit Interface), and/or RTBI (Reduced Ten Bit
Interface) physical interfaces, among others, for example.

In one or more embodiments, processing unit 105 can
include one or more table lookup units (TLUs) 195A1 and
195A2 coupled to system bus 130. Each of TL.Us 195A1 and
195A2 can support several types of table lookup algorithms
and/or provide resources for generation of table entry
addresses in memory, hash generation of addresses, and/or
binary table searching algorithms for exact-match and/or
longest-prefix match strategies. Each table lookup unit (TLU)
can allow an implementation of a variety of table lookup
algorithms for different applications. Each TL.U can include
multiple physical tables, where each table can include an
associated configuration register including a physical table
with a base table address configurable by software.

Turning now to FIG. 2, a trace setup is illustrated, accord-
ing to one or more embodiments. As shown, processing sys-
tem 100 can be coupled to a debug/trace unit 210, and debug/
trace unit 210 can be coupled to a computer system 205. In
one or more embodiments, debug/trace unit 210 can receive
one or more trace messages formed by trace interface 156,
and the trace messages can be conveyed via one or more
packets of data through trace port 157 to debug/trace unit 210.
In one or more embodiments, debug/trace unit 210 can be
external to computer system 205 (as shown), or debug/trace
unit 210 can be included in computer system 205 (not shown).

In one or more embodiments, computer system 205 can
include a processor (not shown) coupled to a memory
medium (not shown), where the processor can execute pro-
gram instructions from the memory medium to perform vari-
ous functions, such as interfacing with trace unit 210 and a
human being. For example, computer system 205 can include
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6

human interface devices such as an output device, e.g., a
display, and an input device, e.g., a keyboard. Computer
system 205 can include or be coupled to other devices, such as
a mouse, one or more speakers, a printer, a track ball, and/or
a microphone, among others.

Turning now to FIG. 3, a block diagram is illustrated that
provides further detail of trace interface 156, according to one
or more embodiments. As illustrated, trace interface 156 can
include message forming units 156 A5-156A25, a multiplexer
(MUX) 156A30, and a message queue 156A35. As shown,
multiple trace streams can be processed in parallel by trace
interface 156, which can form trace messages responsive to
trace events. One or more trace message inputs of MUX
156 A30 can be selected to provide messages at an output of
MUX 156A30. In one or more embodiments, messages pro-
vided at the one or more outputs of MUX 156A30 can be
provided to message queue 156A35, which can determine
whether the messages are to be transmitted in real-time or
stored for later transmission. For instance, messages that are
to be transmitted to the debug/trace tool 210 can be provided
to trace port 157, which is coupled to the debug/trace tool 210.

In one or more embodiments, when an ownership trace
event occurs, ownership trace message (OTM) forming unit
156 A5 can form an OTM and can provide the OTM to an
associated one of the inputs of MUX 156 A30. The OTM can
be periodically formed or formed in response to a processor
identification (PID) register change. In one or more embodi-
ments, the OTM may be useful when employed with embed-
ded processors having memory management units (MMUs).
When the OTM is periodically sent, the OTM can include all
PIDs defined for a current thread. When the OTM is sent when
a PID register changes, the OTM may only include the PID
register that changed to reduce bandwidth. To support either
scenario, a variable length process field may be implemented
inthe OTM. The process field may include a PID enumeration
(PID_ENUM) section followed by a fixed length PID section.
If a PID_ENUM bit of an associated PID is set, then the PID
is included in the packet. If the PID_ENUM bit is not set, then
the PID is not included in the packet. In one or more embodi-
ments, a four bit PID_ENUM section is provided to support
up to four 16-bit PIDs. Similarly, when a data trace event
occurs, data trace message (D'TM) forming unit 156 A10 can
form a DTM and can provide the DTM to an associated one of
the inputs of MUX 156A30.

In one or more embodiments, when a branch trace event
occurs, a branch trace message (BTM) forming unit 156A15
can form a BTM and can provide the BTM to an associated
one of the inputs of MUX 156A30. In one example, the BTM
can include branch history message (BHM) that identifies a
thread switch in a branch type (B-TYPE) field. In another
example, the BTM can include a BHM that identifies a return
from a subroutine. For instance, the BHM can identify a
branch to link instruction (e.g., an indirect branch instruction)
that can be used as a return or exit from a subroutine.

In one or more embodiments, when a program trace corre-
lation (PTC) event occurs, a PTC message forming unit
156A20 can form a PTC message and can provide the PTC
message to an associated one of the inputs of MUX 156A30.
In one or more embodiments, an event code (EVCODE) field
of'the PTC message can be formed in response to an event that
indicated that a branch and link instruction is detected. For
instance, debug/trace unit 155 may detect the branch and link
instruction. In one or more embodiments, an EVCODE field
of'the PTC message can identify a branch and link event that
can be used to identify a call to a subroutine. For example, the
PTC message can debug/trace tool 210 and/or computer sys-
tem 205 to correlate watchpoint or performance events to a
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program trace of an associated subroutine. As shown in Table
1, the PTC message can include the EVCODE field that can
be modified to indicate one or more events, such as a thread
switch, a branch and link event, etc. Other packets of the PTC
message are described in Table 1, as well.

In one or more embodiments, an EVCODE field ofthe PTC
message can identify a thread switch. The PTC message
allows debug/trace tool 210 and/or computer system 205 to,
for example, correlate watchpoint or performance events to a
program trace of an associated thread.

TABLE 1

Minimum
Packet Size

(bits) Packet Name Packet Type Description

0 TSTAMP Vendor-variable ~ Number of cycles
message was held in
the buffer or the full
timestamp value.

This packet is a
vendor-defined field. It
can represent a value
used in correlating an
event with program
flow (e.g., branch
history).

Number of instruction
units executed since the
last taken branch.
Event Code. Refer to
Table 2.

Client that is source of
message.

Value = 33

0 CDATA Vendor-variable

1 I-CNT Variable

0 EVCODE Vendor-fixed

0 SRC Vendor-fixed

6 TCODE Fixed

As shown in Table 2 below, EVCODE of the PTC message
can indicate various events. In one or more embodiments, the
EVCODE of the PTC message can indicate that a branch
occurred in one of cores 110A1 and 110A2. In one example,
the EVCODE of the PTC message can indicate that a branch
and link instruction occurred in one of cores 110A1 and
110A2, and the PTC message can include 1010 as EVCODE
to indicate that the branch and link instruction occurred in one
of cores 110A1 and 110A2. In a second example, the
EVCODE of the PTC message can indicate that a direct
branch instruction occurred in one of cores 110A1 and
110A2, and the PTC message can include 1101 as EVCODE
to indicate that the direct branch instruction occurred in one of
cores 110A1 and 110A2. In another example, the EVCODE
of'the PTC message can indicate that a branch to link instruc-
tion occurred in one of cores 110A1 and 110A2, and the PTC
message can include 1100 as EVCODE to indicate that the
branch to link instruction occurred in one of cores 110A1 and
110A2.

TABLE 2

Event Code (EVCODE) Event Description

0000 Entry into debug mode

0001 Entry into low-power mode

0010 Data Trace - Write

0011 Data Trace - Read

0100 Program Trace Disabled
0101-0111 Reserved for future functionality

1010 Branch and Link Occurrence

1011 Thread Switch

1100 Branch to Link Occurence

Direct Branch Occurrence
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In one or more embodiments, each of the trace events can
provide an associated thread identification (ID) and a core ID
(ifapplicable) to an appropriate message forming unit. In one
or more embodiments, a thread and a core ID can be concat-
enated in a single source (SRC) field of a message. In one or
more embodiments, when an in-circuit trace (ICT) event
occurs, ICT message forming unit 156 A25 can form an ICT
message and can provide the ICT message an associated one
of the inputs of MUX 156A30. The ICT message can be
formed responsive to an inter-thread communication or a
shared memory access, among others. An in-circuit event that
corresponds to, for example, a core register access, a key
circuit debug signal, a watchpoint event, or a performance
event can be reported in the ICT message. In one or more
embodiments, other events and messages (e.g., Nexus events
and messages) not specifically described herein may be
referred to as ICT events and messages, and ICT forming unit
156 A30 can responds to these events and form messages that
correspond to those events.

Turning now to FIG. 4, amethod is illustrated, according to
one or more embodiments. At 405, a program counter can be
incremented. For example, a set of program instructions can
be executing on core 110A1, and the program counter can be
incremented to the next instruction in the set of program
instructions. At 410, a call to a subroutine can be detected. In
one or more embodiments, a subroutine can include a
sequence of machine executable instructions that is invoked
by a call to the subroutine. For example, the subroutine can be
used in one or more computer programs and/or at one or more
points in a computer program. For instance, the subroutine
can be used at two or more points in a computer program such
that the instructions of the subroutine are not repeated in the
computer program but the instructions of the subroutine can
be executed at least two times, e.g., one time for each point of
invocation from the computer program. Other terms for sub-
routine can include routine, function, and/or procedure,
among others.

In one example, debug/trace unit 155 can detect the call to
the subroutine. In another example, performance monitor 160
can detect the call to the subroutine. In one instance, debug/
trace unit 155 can detect the call to the subroutine using
performance monitor 160 to detect the call to the subroutine.
In one or more embodiments, the call to the subroutine can be
detected by a comparison that includes: an instruction being
executed, an instruction pointed to by the program counter, an
instruction in a decode unit, an instruction in a cache, or an
instruction in an issue queue, among others. For example, the
call to the subroutine can be detected by an opcode of the
instruction. In one or more embodiments, a branch instruction
can include the call to the subroutine. In one or more
instances, the branch instruction can be a conditional branch
instruction or a branch-always instruction. In one or more
embodiments, the branch instruction can include a specific
branch instruction. For example, the subroutine call can be
detected by a comparison that identifies a branch and link
instruction. For instance, the branch and link instruction can
be a direct branch instruction, where an address of the sub-
routine is relative to the program counter. In one or more
embodiments, detecting the subroutine call can trigger a PTC
event.

At 415, a first PTC event can be generated, and at 420, a
first PTC message can be generated. For example, the first
PTC message can indicate and/or identify the call to the
subroutine. For instance, the first PTC message can be used to
correlate the call to the subroutine with a later return from the
subroutine. At 430, the first PTC message can be sent. In one
or more embodiments, the first PTC message can be sent to
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message queue 156A35, and message queue 156A35 can
queue the first PTC message and send the first PTC message
later to debug/trace tool 210 via trace port 157, or queue
156A35 can send the first PTC message to debug/trace tool
210 via trace port 157. For instance, queue 156A35 can send
the first PTC message to debug/trace tool 210 via trace port
157 in real-time.

At 435, one or more performance monitors and/or counters
can be cleared and/or started. In one or more embodiments,
the one or more performance monitors and/or counters can
include one or more monitors and/or counters described
above with reference to performance monitor 160. At 440,
system performance and/or counters can be sampled. In one
or more embodiments, information that performance monitor
160 samples, measures, and/or records can be sampled. At
445, an ownership trace, data trace, or ICT event can be
generated. In one or more embodiments, the ownership trace,
data trace, or ICT event can be generated in response to a
change in a monitor or counter. At 450, an OTM, DTM, or
ICT message can be generated. In one or more embodiments,
the OTM, DTM, or ICT message can be generated in response
to the ownership trace, data trace, or ICT event. At 460, the
OTM, DTM, or ICT message can be sent. In one or more
embodiments, the OTM, DTM, or ICT message can be sent to
message queue 156A35, and message queue 156A35 can
queue the OTM, DTM, or ICT message and send the OTM,
DTM, or ICT message later to debug/trace tool 210 via trace
port 157, or message queue 156A35 can send the OTM,
DTM, or ICT message to debug/trace tool 210 via trace port
157. Forinstance, message queue 156 A35 can send the OTM,
DTM, or ICT message to debug/trace tool 210 via trace port
157 in real-time.

At 465, it can be determined whether or not a return from a
subroutine is detected. In one example, debug/trace unit 155
can detect the return from the subroutine. In another example,
performance monitor 160 can detect the return from the sub-
routine. In one instance, debug/trace unit 155 can detect the
return from the subroutine using performance monitor 160 to
detect the return from the subroutine. In one or more embodi-
ments, the return from the subroutine can be detected by a
comparison that includes: an instruction being executed, an
instruction pointed to by the instruction counter, an instruc-
tion in a decode unit, an instruction in a cache, or an instruc-
tion in an issue queue, among others. For example, the return
from the subroutine can be detected by an opcode of the
instruction. In one or more embodiments, a branch instruction
can include the return from the subroutine. In one or more
instances, the branch instruction can be a conditional branch
instruction or a branch-always instruction. In one or more
embodiments, the branch instruction can include a specific
branch instruction. In one example, the return from the sub-
routine can be detected by a comparison that identifies a
branch to link instruction. For instance, the branch to link
instruction can be an indirect branch instruction, where an
address target of the branch is stored in a register of a core
(e.g., a link register). In another example, the return from the
subroutine can be detected by a comparison that identifies a
direct branch instruction. In one or more embodiments, the
instruction can include a hint, where the hint can indicate
whether or not the instruction (e.g., a branch instruction) is a
return from a subroutine, and the hint can be used in deter-
mining whether or not a return from a subroutine is detected.
If a return from the subroutine is not detected, the method can
proceed to 440. If a return from the subroutine is detected, the
method can proceed to 470. In one or more embodiments,
detecting the return from the subroutine call can trigger a
trace event. In one example, detecting the return from the
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subroutine call can trigger a branch trace event. In another
example, detecting the return from the subroutine call can
trigger a PTC event.

At 470, a trace event is generated, and at 475, a trace
message is generated. In one or more embodiments, the trace
event can include a branch history event or a second PTC
event, and a respective BHM or second PTC message can be
generated. At 480, the trace message can be sent to message
queue 156A35, and message queue 156A35 can queue the
trace message and send the trace message later to debug/trace
tool 210 via trace port 157, or message queue 156A35 can
send the trace message to debug/trace tool 210 via trace port
157. For instance, message queue 156 A35 can send the trace
message to debug/trace tool 210 via trace port 157 in real-
time.

At 485, the first PTC message and the trace message can be
correlated. In one or more embodiments, the first PTC mes-
sage and the trace message can be used to determine a bound-
ary for the subroutine. For example, the boundary can be used
to correlate data sampled during an execution of the subrou-
tine to the execution of the subroutine. In one or more
embodiments, a time-stamp of the first PTC message and a
time-stamp of the trace message can be used to correlate the
first PTC message and the trace message.

At 490, sampled data monitored during execution of the
subroutine can be correlated using the first PTC message and
the trace message. In one or more embodiments, a time-stamp
of the first PTC message and a time-stamp of the trace mes-
sage can be used to correlate sampled data monitored during
execution of the subroutine. In one or more embodiments, the
first PTC message may not include a time-stamp, and an order
of trace messages sent at 460, relative to the first PTC mes-
sage, can indicate a time relationship of the sampled data
relative to the subroutine call. In one example, debug/trace
tool 210 can correlate the sampled data monitored during
execution of the subroutine. In another example, computer
system 205 can correlate the sampled data monitored during
execution of the subroutine.

In one or more embodiments, one or more portions of the
method illustrated in FIG. 4 can be non-intrusively utilized to
debug and/or profile software and/or one or more processors,
processing units, processor systems, cores, etc. In one
example, at least one or more of 410-485 does not affect an
execution of the subroutine. In another example, at least one
or more of 410-485 does not affect an execution of a set of
executable instructions (e.g., instructions of the ISA) that
calls the subroutine. In one or more embodiments, the set of
executable instructions that calls the subroutine can include
the subroutine, which the subroutine includes a set of execut-
able instructions (e.g., instructions of the ISA). For example,
the set of executable instructions of the subroutine can be a
proper subset of the set of executable instructions that calls
the subroutine.

It is noted that, in one or more embodiments, one or more
of the method elements described herein and/or one or more
portions of an implementation of a method element may be
performed in varying orders, may be performed concurrently
with one or more of the other method elements and/or one or
more portions of an implementation of a method element, or
may be omitted. Additional method elements can be per-
formed as desired. In one or more embodiments, concurrently
can mean simultaneously. In one or more embodiments, con-
currently can mean apparently simultaneously according to
some metric. For example, two or more method elements
and/or two or more portions of an implementation of a
method element can be performed such that they appear to be
simultaneous to a human. It is noted that, in one or more
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embodiments, one or more of the method elements described
herein and/or one or more portions of an implementation of a
method element can be implemented using logic imple-
mented in hardware (e.g., one or more integrated circuits). In
one example, one or more of the method elements described
herein and/or one or more portions of an implementation of a
method element can be implemented using one or more state
machines implemented using logic implemented in hard-
ware. It is also noted that, in one or more embodiments, one or
more of the system elements described herein can be omitted
and additional system elements can be added as desired.

Further modifications and alternative embodiments of vari-
ous aspects of the invention may be apparent to those skilled
in the art in view of this description. Accordingly, this
description is to be construed as illustrative only and is for the
purpose of teaching those skilled in the art the general manner
of carrying out the invention. It is to be understood that the
forms of the invention shown and described herein are to be
taken as embodiments. Elements and materials may be sub-
stituted for those illustrated and described herein, parts and
processes may be reversed, and certain features of the inven-
tion may be utilized independently, all as would be apparent
to one skilled in the art after having the benefit of this descrip-
tion of the invention. Changes may be made in the elements
described herein without departing from the spirit and scope
of the invention as described in the following claims.

What is claimed is:

1. A method, comprising:

detecting a call to a subroutine via at least one comparison
of at least one instruction;

in response to said detecting the call to the subroutine,
generating a program trace correlation message;

sending the program trace correlation message to a trace
port;

sampling data associated with an execution of the subrou-
tine;

starting at least one performance monitor;

generating at least one of an ownership trace message and
an in-circuit trace message; and

sending the at least one of the ownership trace message and
the in-circuit trace message to the trace port;

wherein said sampling the data associated with the execu-
tion of the subroutine includes sampling the at least one
performance monitor;

sending the sampled data to the trace port;

detecting a return from the subroutine;

in response to said detecting the return from the subroutine,
generating a trace message; sending the trace message to
the trace port; and

correlating the sampled data to the subroutine using a
boundary for the subroutine determined from the pro-
gram trace correlation message and the trace message;

wherein the execution of the subroutine is not interrupted
by at least said sampling the data, said sending the
sampled data, said detecting the return from the subrou-
tine, and said correlating the sampled data.

2. The method of claim 1,

wherein the program trace correlation message is a first
program trace correlation message; and

wherein the trace message is a second program trace cor-
relation message.

3. The method of claim 1, wherein the trace message is a

branch history message.

4. The method of claim 1, further comprising:

executing a plurality of instructions that includes the call to
the subroutine;
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wherein said executing the plurality of instructions is not
affected by at least said detecting the call to the subrou-
tine, said generating the program trace correlation mes-
sage, said sending the program trace correlation mes-
sage, said sampling the data, said sending the sampled
data, said detecting the return from the subroutine, said
generating the trace message, said sending the trace
message, and said correlating the sampled data.
5. The method of claim 1, further comprising:
executing the subroutine;
wherein said executing the subroutine is not affected by at
least said detecting the call to a subroutine, said gener-
ating the program trace correlation message, said send-
ing the program trace correlation message to the trace
port, said sending the trace message, and said correlating
the sampled data.
6. The method of claim 1, wherein the trace port includes at
least one or a NEXUS trace port and an IEEE 1149.1 port.
7. The method of claim 1, wherein said detecting the return
from the subroutine includes detecting an indirect branch
instruction.
8. The method of claim 7,
wherein the call to the subroutine includes a branch and
link instruction, wherein an address of the subroutine is
relative to a program counter; and
wherein the indirect branch instruction includes a branch to
link instruction.
9. A system, comprising:
at least one core configured to execute instructions of an
instruction set architecture (ISA); and
afirsttrace unit coupled to the at least one core, wherein the
trace unit is configured to:
detect a call to a subroutine via at least one comparison
of at least one instruction, wherein the call to the
subroutine includes a branch and link instruction of
the ISA, wherein an address of the subroutine is rela-
tive to a program counter of the at least one core;
in response to said detecting the call to the subroutine,
generate a program trace correlation message;
send the program trace correlation message to a trace port;
sample data associated with an execution of the subroutine;
start at least one performance monitor;
sample the at least one performance monitor when the trace
unit samples data associated with the execution of the
subroutine;
generate at least one of an ownership trace message and an
in-circuit trace message; and
send the at least one ofthe ownership trace message and the
in-circuit trace message to the trace port;
send the sampled data to the trace port;
detect a return from the subroutine;
inresponse to said detecting the return from the subroutine,
generate a branch history message; and
send the branch history message to the trace port; and
correlate the sampled data to the subroutine using a bound-
ary for the subroutine determined from the program
trace correlation message and the branch history mes-
sage;
wherein the execution of the subroutine is not interrupted
by at least said sampling the data, said sending the
sampled data to the trace port, and said detecting the
return from the subroutine.
10. The system of claim 9, further comprising:
an integrated circuit, wherein the integrated circuit
includes the at least one core and the first trace unit.
11. The system of claim 9, wherein the at least one core is
configured to:
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execute a plurality of instructions of the ISA that includes

the call to the subroutine;

wherein said executing the plurality of instructions of the

ISA is not affected by at least said detecting the call to
the subroutine, said generating the program trace corre-
lation message, said sending the program trace correla-
tion message to the trace port, said sampling the data,
said sending the sampled data, said detecting the return
from the subroutine, said generating the branch history
message, and said sending the branch history message.

12. The system of claim 11, wherein the subroutine
includes a plurality of instructions of the ISA, and wherein the
plurality of instructions of the subroutine is a proper subset of
the plurality of instructions that includes the call to the sub-
routine.

13. The system of claim 9, wherein said detecting the return
from the subroutine includes detecting a branch to link
instruction of the ISA.

14. A non-transitory computer readable storage medium
comprising instructions, which when executed on a process-
ing system, cause the processing system to perform:

detecting a call to a subroutine via at least one comparison

of at least one instruction;

in response to said detecting the call to the subroutine,

generating a program trace correlation message;
sending the program trace correlation message to a trace
port;

sampling data associated with an execution of the subrou-

tine;

starting at least one performance monitor;

generating at least one of an ownership trace message and

an in-circuit trace message; and
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sending the at least one of the ownership trace message and
the in-circuit trace message to the trace port;

wherein said sampling the data associated with the execu-
tion of the subroutine includes sampling the at least one
performance monitor;

sending the sampled data to the trace port;

detecting a return from the subroutine;

inresponse to said detecting the return from the subroutine,
generating a trace message;

sending the trace message to the trace port; and

correlating the sampled data to the subroutine using a
boundary for the subroutine determined from the pro-
gram trace correlation message and the trace message;

wherein the execution of the subroutine is not interrupted
by at least said sampling the data, said sending the
sampled data, said detecting the return from the subrou-
tine, said generating the trace message, said sending the
trace message, and said correlating the sampled data.

15. The computer readable storage medium of claim 14,

wherein the program trace correlation message is a first
program trace correlation message; and

wherein the trace message is a second program trace cor-
relation message.

16. The computer readable storage medium of claim 14,

wherein the trace message is a branch history message.

17. The computer readable storage medium of claim 14,

wherein the call to the subroutine includes a branch and
link instruction, wherein an address of the function is
relative to a program counter; and

wherein said detecting the return from the subroutine
includes detecting a branch to link instruction.
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